

API for DCH

API for DCH
V1.0 (Oct 2021)

Contents

Purpose of This Document .. 3

Senaps Database API ... 3

DCH Building Model API .. 3

SPARQL .. 3

ModelReference class fields ... 4

Query class fields .. 4

BRIQL ... 5

QueryInvocation class fields ... 5

Query class fields .. 5

NodeReference class fields ... 5

ModelReference class fields ... 6

QueryVar class fields ... 6

NodeVar class fields (subclass of QueryVar) ... 6

PropertyVar class fields (subclass of QueryVar) ... 7

VarFields .. 7

MatchType .. 7

Block class fields .. 7

PropertyPath class fields ... 8

Property class fields .. 8

Query response ... 9

QueryResponse class fields ... 9

ResponseValue .. 9

NullValue ... 9

NodeValue class fields .. 9

PropertyValue class fields ... 9

TypeValue class fields ... 9

PointInfo class fields ... 10

Purpose of This Document

This document aims at detailing how app developers and users can acquire building model and

timeseries data from DCH.

There are two separate APIs offered by DCH to manage the data and the building models hosted on

the platform. While the data hosted on Senaps can be managed using the Senaps API, the DCH API

offers building model queries to perform tasks on the semantic building model.

Senaps Database API
The datastreams of nodes in building models are hosted on Senaps which offers an extensive API

interface for users. API examples can be found here: https://senaps.io/api-docs/#/.

DCH Building Model API
DCH supports two query languages to retrieve information from the building models, SPARQL and

BRIQL. BRIQL is the recommended query language for DCH.

The contents of the queries are written in a JSON object which is the body of a RestAPI request. The

RDF semantic models hosted on DCH use Brick Ontology, so the API can query building nodes based

on their Brick classification. At this stage, DCH can provide a Postman environment with examples to

enable users to use the DCH API.

SPARQL
SPARQL is a well-known query language used to obtain information from RDF databases. Using

SPARQL you can query building nodes and the relationships between these nodes.

The API endpoint POST https://staging.dataclearinghouse/dch/v1/sparql/select accepts a JSON body

with the following fields:

https://senaps.io/api-docs/#/
https://staging.daya/dch/v1/sparql/select

ModelReference class fields

Field Type Meaning

org_id string ID of the organisation

site_id string ID of the site

building_id string (nullable) ID of the building (null for sites)

model_id String (nullable) URI of the model (set only in responses)

Query class fields

Field Type Meaning

where_verbatim query SPARQL expression

distinct boolean If true, exclude duplicate results

input_variables List of string List of inputs

output_variables List string List of output variables as defined by user in
query

Response mime:

When response_mime is “application/sparql-results+json“, the response body is formatted according to

the standard JSON schema for SPARQL results (see https://www.w3.org/TR/rdf-sparql-json-res/).

Alternatively, when response_mime is “application/sparql-results-dch+json”, the response body is a terse

custom JSON format unique to DCH. TODO describe here.

SPARQL example returning all Hot Water Pumps feeding the Air Handler Units:

{

 "models": [

 {

 "org_id": "Alpha",

 "site_id": "A",

 "building_id": "Building 1"

 }

],

 "query_specification": {

 "where_verbatim": " ?hwp a brick:Hot_Water_Pump . ?hwp brick:feeds/rdf:type brick:Air_Handler_Unit . ",

 "distinct": true,

 "input_variables": [],

 "output_variables": [

 {"name":"hwp"}

],

 "bindings": {}

 },

 "response_mime": "application/sparql-results-dch+json"

}

https://www.w3.org/TR/rdf-sparql-json-res/

BRIQL
BRIQL is a domain-specific language and protocol used for querying information on the building

model nodes and relationships. Like SPARQL variables, BRIQL variables represent RDF nodes. Unlike

SPARQL variables, labels and brick Points do not need to be requested as variables. Rather, a node is

returned as an object representation that includes its label and any related brick Points. This means

that BRIQL provides a more object-oriented API, with less overhead.

The BRIQL API endpoint POST https://staging.dataclearinghouse/dch/v1/query accepts a

QueryInvocation object.

QueryInvocation class fields

Field Type Meaning

query_ref string (nullable) If set, a reference to a stored query (mutually exclusive
with query_ref and describe).

query_def Query (nullable) If set, a literal Query to be run (mutually exclusive with
query_ref and describe).

describe NodeReference
(nullable)

If set, query will exhaustively describe this node
(mutually exclusive with query_ref and query_def).

models List of
ModelReference

List of ModelReferences against which the query is to
be run.

bindings List of QueryVar List of variables to be pre-bound in queries.

limit_node_refs Map of string to list
of NodeReference
(nullable)

Map of QueryVar name to a list of NodeReferences.
This will use the SPARQL query construct VALUES
(?varname) { (uri1) (uri2) etc}, to force the query to
solve only for the provided nodes.

Query class fields

Field Type Meaning

ref string (nullable) Optional string to treat as a reference to this query

comment string (nullable) Optional string to describe query’s purpose

variables List of QueryVar In select mode: list of variables used in the query Block.

query Block In select mode: the outermost block of the SPARQL

SELECT query to be matched.

limit_node_refs Map of string to list
of NodeReference
(nullable)

Optional map of QueryVar name to a list of
NodeReferences. This will use the SPARQL query
construct VALUES (?varname) { (uri1) (uri2) etc}, to
force the query to solve only for the provided nodes.

NodeReference class fields

Field Type Meaning

model_ref ModelReference Reference to a model (site or building)

node_id String (nullable) If null: the NodeReference represents the model itself.

Otherwise, the NodeReference represents the

identified node within the model.

https://staging.dataclearinghouse/dch/v1/query

ModelReference class fields

Field Type Meaning

org_id string ID of the organisation

site_id string ID of the site

building_id string (nullable) ID of the building (null for sites)

model_id String (nullable) URI of the model (set only in responses)

QueryVar class fields
This is an abstract class; subclasses are NodeVar, TypeVar and PropertyVar, used for matching

instance nodes, brick types, and brick properties respectively. Fields in this class are present in all

subclasses.

Field Type Meaning

name string Name of the variable. Do not prefix with $ or ?.

comment string Comment about variable’s purpose

input boolean (nullable) If true, this variable is a bindable input

output boolean (nullable) If true, this variable will be included in results

nullable boolean (nullable) If true, this variable may be null in results

constraints Block (nullable) If set, apply this Block's triples as constraints on this

QueryVar. This is especially important for nullable

QueryVars, where all triples should be bundled in a

single OPTIONAL Block (graph pattern), where

constraints can not be defined in the outermost query

Block. Any other Implied triples will be merged into this

Block.

NodeVar class fields (subclass of QueryVar)

Field Type Meaning

bind List of VarFields

(nullable)

List of fields to bind in query invocations (if null/empty,

default is [id]). Required if input field is true.

fetch List of VarFields

(nullable)

list of fields to fetch and return in results (if null/empty,

default is [id]). Required if output is true. If 'pointinfo' is

included, fetch_points must have at least one element.

org_id string (nullable) If these fields are set in a query or invocation, compose

a node URI to be bound to the variable. site_id string

building_id string (nullable)

node_id string (nullable)

brick_types List of MatchType

(nullable)

If set in a query or invocation, constrain this node

variable to match at least one of the listed MatchTypes

fetch_points List of MatchType

(nullable)

If set, only return associated points that match at least

one of the listed MatchTypes. This field is required to

be set if the fetch field includes pointinfo

filter_on list of VarFields

(nullable)

If set and filter_string is set, filter string is applied to

these fields.

filter_string string (nullable) If set and filter_on is set, this string (expected to be a a

SPARQL filter) is applied to fields listed in filter_on.

PropertyVar class fields (subclass of QueryVar)

Field Type Meaning

property string (nullable) This value, if bound in a query, will constrain the brick

property of a variable. In an output variable, this will be

bound to a Brick property for each solution. Possible

values are: feeds, isFedBy, hasPart, isPartOf,

hasLocation, isLocationOf, hasPoint, isPointOf.

VarFields
VarFields is an enumeration, represented in JSON with a string equal to one of the following

String value Meaning

model_id The ID of the model to which the node belongs

id The ID of the node

type The Brick type of the node

hypernym The hypernym of the node’s type (I.e. Location, Equipment, Zone or Point)

pointinfo The IDs and streams IDs of points attached to the node

streams Streams IDs of points attached to the node

label The label of the node

MatchType
Either tags must be set, or both match and type must be set.

Field Type Meaning

match string (nullable) Specify the kind of match to perform on type field:

• isa (match this Brick type or its child types)

• equals (match this Brick type exactly)

• parent (match only child types of this type)

• hypernym (match this hypernym)

type string (nullable) Match this Brick type. Requires match is 'equals',

'hypernym', 'isa', or 'parent'. Mutually exclusive with

tags. This field expects only the fragment component

of the type’s URI without prefix or delimeters (eg

“Room”, not “brick:Room”).

tags List of string

(nullable)

If set and match is “tags”, match any Brick type which

has all of these tags

Block class fields
At run time, queries attempt to find solutions that match the nested structure of query elements.

The fundamental unit is the Block (equivalent to a graph pattern in SPARQL terminology). Each query

contains at least one block. Each block contains zero or more paths, and zero or more nested blocks.

Internally, these are converted to valid SPARQL syntax at query run time. Paths are converted to

triples patterns first (in specified order), followed by conversion of blocks (again, in specified order).

Field Type Meaning

comment string Comment about block’s purpose.

paths List of PropertyPath

(nullable)

If set, these paths must all be matched by this block.

nested List of Block(nullable) If set, nest these Blocks inside this Block.

subquery List of Query

(nullable)

If set, add these Queries as SPARQL subquery SELECT

blocks. NOT IMPLEMENTED YET

logic string (nullable) Either “and” (assumed default) or “or”, indicating the

matching logic to be applied to the elements enclosed

by this block (all match, or any match respectively).

optional boolean (nullable) If true, this block’s constraints are matched optionally.

Defaults to false.

model ModelReference

(nullable)

If set, apply this block’s constraints to the given model

(using SPARQL’s GRAPH {...} syntax).

PropertyPath class fields
A property path expresses a chain of edges between one model node and another. A property path

matches one subject node, one or more predicates (properties), and an object node.

Field Type Meaning

from_ref string The SPARQL subject node (must be the name of a

variable in the query definition)

properties Non-empty list of

Property

One or more Property, representing the chain of

predicates between subject and object nodes.

to_ref string The SPARQL object node. Must be the name of a

variable in the query definition.

Property class fields

Field Type Meaning

property string (nullable) If set, this Property is the named Brick property

(mutually exclusive with the variable and or field)

variable string (nullable)

If set, this Property is the named variable (mutually

exclusive with the property and or field)

or List of Property

(nullable)

If set, this Property’s position in the matched property

path may take any one of the named Brick Properties

(mutually exclusive with the property and variable

field)

min null, 0 or 1 Min and max fields, if set, apply property path

quantifiers to specify how many chained occurrences of

this property are to be matched by the query.

min==0 → zero or more occurrences

min==1 and max==null → at least one occurrence

min==0 and max ==1 → either zero or one occurrence

Other combinations are not supported.

max null, or 1

Query response
For a select query, the response is a QueryResponse object. This

QueryResponse class fields

Field Type Meaning

models List of

ModelReference

The models which were included in the query

variable_names list of string Names of output variables.

solution_nodes map of string to

{map of string to

NodeValue}

Outer key: variable’s name

Inner key: node’s full URI

Inner value: a NodeValue describing the node

solution_table List of {map of string

to ResponseValue}

The outer list is a list of solutions (rows).

Each solution is a map of variable name to a

ResponseValue

ResponseValue
There are four subclasses of ResponseValue class: NullValue, NodeValue, PropertyValue, TypeValue.

NullValue
(no fields, represents an unbound output variable)

NodeValue class fields
This represents node values bound to variables in solutions.

Field Type Meaning

model_index integer The model to which the node belongs (an index into

the list in the models field of the QueryResponse)

id string The ID (local to the model) of the node, if requested

type string The brick type of the node, if requested

hypernym string The hypernym of the node’s type (if requested)

pointinfo List of PointInfo List of PointInfo instances (if requested and any exist)

streams List of string List of Seanaps stream IDs (if 'streams' was requested

in fetch field). This is only useful if the requested node

is a Point.

PropertyValue class fields
This represents property values bound to variables in solutions.

Field Type Meaning

property string The property bound to the variable

TypeValue class fields
This represents type values bound to variables in solutions.

Field Type Meaning

type string A Brick type

hypernym string Hypernym of the type

PointInfo class fields

Field Type Meaning

type string The Brick type of the Point

point string The Point’s node ID

streams List of string The Senaps stream ID(s), if any, belonging to the Point

BRIQL example returning all Hot Water Pumps feeding Air Handler Units:

{

 "models": [

 {

 "org_id": "Alpha",

 "site_id": "A",

 "building_id": "Building 1"

 }

],

 "query_def": {

 "comment": "Find which HWPs are feedings which AHUs.",

 "mode": "select",

 "variables": [

 {

 "var_type": "node",

 "name": "hwp",

 "output": true,

 "fetch": [

 "id"

],

 "brick_types": [

 {

 "match":"isa", "type":"Hot_Water_Pump"

 }

]

 },

 {

 "var_type": "node",

 "name": "ahu",

 "output": true,

 "fetch": [

 "id"

],

 "brick_types": [

 {

 "match":"isa", "type":"Air_Handler_Unit"

 }

]

 }

],

 "query":{

 "paths":[

 {

 "from_ref":"hwp",

 "to_ref":"ahu",

 "properties":[{"property":"feeds"}]

 }

]

 }

 }

}

